Previous Year Paper Paper - II
Electrical Engineering
(2016 Shift 2)

State Engineering (Prelims) Exam - 2016

Second Paper - Second Shift

(Final Model Answer Key)
Electrical Engineering

Q.No: 1	What will be the Fourier Transform of complex exponential signal $\mathbf{x}(\mathbf{t})=\mathbf{e}^{\mathbf{j} \omega_{\mathbf{t}}} \boldsymbol{?}$
A	An impulse function
B	A rectangular gate function
C	A train of impulse functions
D	A constant function
Correct Answer	A

Q.No: 2	Mathematical relation between unit impulse function $\delta(t)$ and step function $u(t)$ can be given by
A	$u(t)=\int_{-\infty}^{t} u(\tau) d \tau$
B	$u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$
C	$u(t)=\delta(t)$
D	$u(t)=\frac{d \delta(t)}{d t}$
Correct Answer	B

Q.No: 3	If $\mathbf{G}(\omega)$ is the Fourier transform of $\mathbf{g}(\mathbf{t})$ then according to scaling property of the Fourier transform, the Fourier transform of $\mathbf{g}($ at $)$ is given by $:$
A	$(1 /\|a\|) \mathbf{G}((\omega / a))$
B	$\mid \mathbf{l a \| G (\omega a)}$
C	$\mathbf{a} \mathbf{G}(\omega \mathbf{a})$
D	$\mathbf{G}(\omega / \mathbf{a})$
Correct Answer	A

Q.No: 4	The convolution operation of two signals in time domain can be represented by the following operation in Z-transform domain
A	multiplication

B	Addition
C	Subtraction
D	Division
Correct Answer	A

Q.No: 5	The Nyquist frequency of the signal $\mathbf{x}(\mathbf{t})=\cos (100 \pi \mathbf{t})+\mathbf{1 0 0} \sin (600 \pi \mathbf{t})+\cos (200 \pi \mathbf{t})$ is
A	$\mathbf{1 0 0 ~ H z}$
B	$\mathbf{6 0 0 ~ H z}$
C	$\mathbf{4 0 0 ~ H z}$
D	$\mathbf{2 0 0 ~ H z}$
Correct Answer	B

Q.No: 6	The nature of the Fourier Series coefficients are periodic then this means signal in time domain is
A	Continuous - time periodic signal
B	Continuous - time aperiodic signal
C	Discrete - time periodic signal
D	Discrete - time aperiodic signal
Correct Answer	C

Q.No: 7	The Fourier transform of a signal $x(t)=\cos \left(\omega_{0} t\right)$ is given by
A	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
B	$\frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
C	$2 \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
D	$\pi\left[\delta\left(\omega-2 \omega_{0}\right)+\delta\left(\omega+2 \omega_{0}\right)\right]$
Correct Answer	A

Q.No: 8	Inverse Fourier transform of a Sinc - function will be a
A	Rectangular Function
B	Signum Function
C	Impulse Function
D	Gaussian Function
Correct Answer	A

Q.No: 9	Which one of the following statement is true?
A	Transistor can be modelled as current controlled current source
B	Transistor can be modelled as current controlled voltage source
C	Transistor can be modelled as voltage controlled voltage source
D	Transistor can be modelled as voltage controlled current source
Correct Answer	A

Q.No: 10	The Poynting Vector (\vec{P}) in terms of electric field vector (\vec{E}) and magnetic field vector $(\vec{H}$ is given by
A	$\vec{P}=\vec{E} \cdot \vec{H}$
B	$\vec{P}=\frac{\vec{E}}{\vec{H}}$
C	$\vec{P}=\frac{\vec{H}}{\vec{E}}$
D	$\vec{P}=\vec{E} \times \vec{H}$
Correct Answer	\mathbf{D}

Q.No: 11	The transistor which is used for designing the digital circuits generally has to operate in
A	Active region
B	Breakdown region
C	Cutoff \& Saturation region
D	All are correct
Correct Answer	C

Q.No: 12	At room temperature, the band gap of a silicon is as follows :
A	$\mathbf{1 . 6 ~ e V}$
B	$1.1 \mathbf{~ e V}$
C	$\mathbf{0 . 5 ~ e V}$
D	$\mathbf{1 . 3 ~ e V}$
Correct Answer	B

Q.No: 13	The oscillator which uses a tapped coil in the LC circuit is known as
A	Colpitts Oscillator
B	Hartley Oscillator

C	Armstrong Oscillator
D	Pierce Oscillator
Correct Answer	B
Q.No: 14	The relation between electric field vector $(\vec{E}$) and magnetic field vector (\vec{H}) is given by
A	$\frac{\vec{E}}{\vec{H}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$
B	$\frac{\vec{E}}{\vec{H}}=\sqrt{\mu_{0} \varepsilon_{0}}$
C	$\frac{\vec{H}}{\vec{E}}=\sqrt{\mu_{0} \varepsilon_{0}}$
D	$\frac{\vec{H}}{\vec{E}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$
Correct Answer	\mathbf{A}

Q. No: 15	The ratio of the velocity of a wave in free space with the velocity of the wave in the conduction medium is known as
A	Space Function
B	Refractive Index
C	Attenuation Factor
D	Poynting Vector
Correct Answer	B

Q.No: 16	NAND gate will have low output if two inputs are following
A	$\mathbf{0 0}$
B	$\mathbf{0 1}$
C	$\mathbf{1 0}$
D	$\mathbf{1 1}$
Correct Answer	D

Q.No: 17	A Schmitt trigger generates one of the following type of output waveform
A	Triangular
B	Rectangular
C	Trapezoidal
D	Sinusoidal

Correct Answer B

Q.No: 18	For the conversation of parallel to series data, following device can be used:
A	Demultiplexer
B	Multiplexer
C	Decoder
D	Counter
Correct Answer	B

Q.No: 19	EX-OR gate can work as NOT gate for the following condition
A	If one input can be made equal to one
B	If one input can be made equal to zero
C	By connecting both inputs together
D	None of these are correct
Correct Answer	A

Q.No: 20	The length of instruction in $\mathbf{8 0 8 5}$ micro processor is
A	$\mathbf{3 2}$ bits
B	$\mathbf{2 4}$ bits
C	$\mathbf{8}$ bits
D	$\mathbf{1 6}$ bits
Question Deleted	

Q.No: 21	Pirani gauge can be used to measure
A	Very high temperature
B	Very low pressure
C	Low fluid flow
D	High fluid flow
Correct Answer	B

Q. No: 22	Which one of the following statement is true?
A	In a capacitor, dielectric material between two plates reduces its capacitance
B	In a capacitor, dielectric material between two plates increases its capacitance
C	In a capacitor, dielectric material between two plates does not affect its capacitance
D	None of these are correct

Correct Answer B

Q.No: 23	Varactor can be defined as
A	A diode which is used as a variable capacitor
B	A diode which is useful for high speed switching
C	A diode which is used as a variable inductor
D	A diode which is used as a variable resistor
Correct Answer	A

Q.No: 24	A PMMC based instrument can be used to measure
A	DC (Average) value
B	Maximum value
C	RMS(root mean square) value
D	All are correct
Correct Answer	A

Q.No: $\mathbf{2 5}$	The Boolean expression given by $\bar{X} Y+X \bar{Y}+X Y$ is equivalent to
A	$X+Y$
B	$\bar{X}+Y$
C	$X Y$
D	$\overline{X+Y}$
Correct Answer	A

Q.No: 26	If in a amplitude modulation (AM) based communication system P_{c} denotes the power of carrier and $\mathbf{P}_{\mathbf{t}}$ denotes the total power of $A M$ wave then for modulation index $=1$, the relation between $\mathbf{P}_{\mathbf{c}}$ and $\mathbf{P}_{\mathbf{t}}$ will be
A	$\mathbf{P}_{\mathbf{c}}=\mathbf{P}_{\mathbf{t}}$
B	$\mathbf{P}_{\mathbf{c}}=\mathbf{P}_{\mathbf{t}} / \mathbf{2}$
C	$\mathbf{P}_{\mathbf{t}}=\mathbf{P}_{\mathbf{c}} / \mathbf{4}$
D	$\mathbf{P}_{\mathbf{t}}=\mathbf{3} \mathbf{P}_{\mathbf{c}} / \mathbf{2}$
Correct Answer	D

Q. No: 27	In communication system, the ergodic process concept for many random signal means
A	They have similar ensemble averages
B	They have similar time averages

C	They have similar time and ensemble averages
D	They do not have similar time and ensemble averages
Correct Answer	C
Q.No: 28	The frequency modulation (FM) based communication system has the following disadvantages over the amplitude modulation (AM) communication system:
A	requirement of more output power
B	requirement of more bandwidth
C	requirement of more modulating power
D	presence of noise in high frequency regions
Correct Answer	B

Q.No: 29	Sampling theorem is useful in following communication system
A	Pulse code Modulation (PCM)
B	Amplitude Modulation (AM)
C	Frequency Modulation (FM)
D	Phase Modulation (PM)
Correct Answer	A

Q.No: 30	Noise generally affects the following part of the communication system
A	Transmitter
B	Receiver
C	channel
D	None of these are correct
Correct Answer	C

Q.No: 31	The inverse Laplace transform of $\frac{8}{s(s+2)}$ is
A	$\mathbf{4 (1 - \mathbf { e } ^ { - 2 t })}$
B	$\mathbf{4 (1 + \mathbf { e } ^ { - 2 t })}$
C	$\mathbf{4 (1 - \mathbf { e } ^ { \mathbf { 2 t } })}$
D	$\mathbf{4 (1) + \mathbf { e } ^ { \mathbf { 2 t } })}$
Correct Answer	A

Q.No: 32 In control system, in order to represent multiple input and multiple output systems which
technique is more suitable

A	Bode plots
B	State space models
C	Root locus methods
D	Nyquist plot
Correct Answer	B

Q.No: 33	The Laplace transform of a doublet can be given as
A	$\mathbf{1 / s}$
B	\mathbf{s}
C	$\mathbf{s}^{\mathbf{2}}$
D	$\mathbf{1 / \mathbf { s } ^ { \mathbf { 2 } }}$
Correct Answer	B

Q.No: 34	Which one of the following statement is true
A	By introducing a negative feedback, both system stability and system gain increases
B	By introducing a negative feedback, system stability increases and system gain decreases
C	By introducing a negative feedback, system stability decreases and system gain increases
D	By introducing a negative feedback, system stability and system gain both decreases
Correct Answer	B

Q.No: 35	The transfer function of a system is given as $\frac{3 s+1}{s^{2}+s+1}$ this system is
A	Unstable system
B	Stable system
C	Marginally stable system
D	None of these are correct
Correct Answer	B

Q.No: 36	Suppose a communication channel in the presence of additive white Gaussian noise has bandwidth 8 KHz, and signal to noise ratio $($ SNR $)=\mathbf{7}$ then the channel capacity will be
A	$\mathbf{3 2}$ Kbps
B	$\mathbf{8}$ Kbps
C	$\mathbf{2 4}$ Kbps
D	$\mathbf{6 4}$ Kbps
Correct Answer	C

Q.No: 37	The pulse width Modulation process can be achieved by
A	Using free-running multivibrator
B	Performing integration on the signal
C	Using a mono-stable multivibrator
D	Performing a differentiation on pulse position modulation
Correct Answer	C

Q.No: 38	In frequency division multiplexing (FDM) receiver, in order to separate the channels, following is used.
A	Integrator
B	Differentiator
C	Band pass filters
D	AND gates
Correct Answer	C

Q.No: 39	A communication circuit resonates at frequency of $\mathbf{1} \mathbf{K H z}$ and this circuit has \mathbf{Q} factor $\mathbf{Q}=$ $\mathbf{1 0 .}$ What will be the bandwidth corresponding to half power points
A	$\mathbf{1 0 0 ~ H z}$
B	$\mathbf{1 0 ~ H z}$
C	$\mathbf{1 0 0 0 ~ H z}$
D	$\mathbf{1 ~ H z}$
Correct Answer	A

Q. No: 40	Thermal noise power \mathbf{P} in a resistor \mathbf{R} is related as follows:
A	$\mathbf{P} \propto \mathbf{R}$
B	$\mathbf{P} \propto \mathbf{1 / R}$
C	$\mathbf{P} \propto \mathbf{R}^{\mathbf{2}}$
D	\mathbf{P} is independent of \mathbf{R}
Correct Answer	\mathbf{D}

Q. No: 41	The resistance for a conductor will be least for the following
A	DC
B	$\mathbf{6 0 ~ H z}$
C	$\mathbf{1 0 ~ K H z}$
D	$\mathbf{1 0 ~ M H z}$

Correct Answer A

Q.No: 42	The angle modulated signal given as $\mathbf{x (t)}=\mathbf{2 0} \cos \left(\omega_{\mathbf{c}} \mathbf{t}-\mathbf{0 . 5} \cos (\mathbf{1 0 0 t})\right)$ has power
A	$\mathbf{1 0 0}$
B	$\mathbf{2 0 0}$
C	$\mathbf{5 0}$
D	$\mathbf{3 0 0}$
Correct Answer	B

Q.No: 43	Suppose $\mathbf{P}_{\mathbf{K}}$ denotes the probability of a message then the amount of information denoted by $\mathbf{I}_{\mathbf{K}}$ in bits can be given by
A	$\mathbf{I}_{\mathbf{K}}=\mathbf{- 2} \log _{\mathbf{2}} \mathbf{P}_{\mathbf{K}}$
B	$\mathbf{I}_{\mathbf{K}}=\mathbf{- \operatorname { l o g } _ { \mathbf { 2 } } \mathbf { P } _ { \mathbf { K } }}$
C	$\mathbf{I}_{\mathbf{K}}=\mathbf{- 1 0} \log _{\mathbf{2}} \mathbf{P}_{\mathbf{K}}$
D	$\mathbf{I}_{\mathbf{K}}=\mathbf{1 0} \log _{\mathbf{2}} \mathbf{P}_{\mathbf{K}}$
Correct Answer	B

Q.No: 44	The Z-transform of $\delta(\mathbf{n}-\mathrm{p})$ is given by
A	$\mathbf{z}^{-\mathbf{P}}$
B	$\mathbf{Z}^{\mathbf{P}}$
C	$\mathbf{Z}^{-\mathbf{P} / \mathbf{2}}$
D	$\mathbf{z}^{-1 / \mathrm{P}}$
Correct Answer	A

Q.No: 45	Power spectral density of a signal $\mathbf{x}(\mathrm{t})$ is $\mathbf{S}_{\mathbf{x}}(\mathbf{f})$,then the power spectral density of it's Hilbert transformed signal will be
A	$-\mathbf{S}_{\mathbf{x}}(\mathbf{f})$
B	$\mathbf{S}_{\mathbf{x}}(\mathbf{f})$
C	$\boldsymbol{\pi} \mathbf{S}_{\mathbf{x}}(\mathbf{f}) / \mathbf{2}$
D	$\mathbf{2} \pi \mathbf{S}_{\mathbf{x}}(\mathbf{f})$
Correct Answer	B

Q. No: 46	Which one of the following statement is true: For modeling of ideal operational amplifier
A	Voltage controlled Current source
B	Voltage controlled Voltage source

C	Current controlled Current source
D	Current controlled Voltage source
Correct Answer	B
Q. No: 47	Quantization noise is generated in the following:
A	Frequency division multiplexing
B	Time division multiplexing
C	Pulse code modulation
D	Amplitude modulation
Correct Answer	C

Q.No: 48	Which is a circular polarized antenna?
A	Yagi-Uda
B	Parabolic reflector
C	Small circular loop
D	Helical
Correct Answer	D

Q.No: 49	In a waveguide, the wavelength of a wave is
A	Directly proportional to the group velocity
B	Greater than its value in free space
C	Dependent on the waveguide dimensions
D	Inversely proportional to the phase velocity
Correct Answer	B

Q.No: 50	Virtual ground is a ground for
A	Current and not for Voltage
B	Neither Current nor Voltage
C	Voltage and Current both
D	Voltage and not for Current
Correct Answer	D

Q.No: $51 \quad$ For the circuit of below figure. The voltages $\mathbf{V}_{\mathbf{1}} \& \mathbf{V}_{\mathbf{2}}$ are

A	$\mathrm{V}_{1}=8 \mathrm{~V}, \mathrm{~V}_{2}=12 \mathrm{~V}$
B	$\mathrm{V}_{1}=8 \mathrm{~V}, \mathrm{~V}_{2}=-12 \mathrm{~V}$
C	$\mathrm{V}_{1}=-8 \mathrm{~V}, \mathrm{~V}_{2}=-12 \mathrm{~V}$
D	$\mathrm{V}_{1}=-8 \mathrm{~V}, \mathrm{~V}_{2}=12 \mathrm{~V}$
Correct Answer	B

	Figure.	
A	2.4 A	
B	3.6 A	
C	2.4 A	
D	4.2 A	-
Correct Answer	B	0

	For the series RLC circuit of below figure, the current $i(t)$ will show
Q. No: 54	$24 \mathrm{u}(\mathrm{t})$

Q.No: 55	If in a single phase AC circuit, $v(t)=120 \sin \left(314 t+45^{\circ}\right) V \& i(t)=10 \sin \left(314 t-10^{\circ}\right) A$. The average power absorbed in the circuit is
A	300.5 W
B	491.4 W
C	344.2 W
D	982.9 W
Correct Answer	C

A	8 H
B	3 H
C	6 H
D	4 H
Correct Answer	D

| | For the balanced delta connected load as shown in figure below, the phase current
 $\overline{\mathrm{I}}_{A B}=13.2 \angle 36.87^{\circ} \mathrm{A}$. Then the line current $\overline{\mathrm{I}}_{b}$ is |
| :--- | :--- | :--- |
| Q.No: 57 | |
| | $\overline{\mathrm{I}}_{b}=22.86 \angle 6.87 \mathrm{~A}$ |
| A | $\overline{\mathrm{I}}_{b}=22.86 \angle 126.87^{\circ} \mathrm{A}$ |
| B | $\overline{\mathrm{I}}_{b}=22.86 \angle-113.13^{\circ} \mathrm{A}$ |
| C | $\overline{\mathrm{I}}_{b}=22.86 \angle-83.13^{\circ} \mathrm{A}$ |
| D | C |
| Correct Answer | |

	Given Y parameter of a two port network as
Q.No: 58	$[\mathrm{Y}]=\left[\begin{array}{rr}0.3 & -0.2 \\ -0.2 & 0.3\end{array}\right]$
	The Z-parameter of the network $\mathbf{Z}_{\mathbf{2 2}}$ is
A	$\mathbf{5} \Omega$
B	$\mathbf{6} \Omega$
C	$\mathbf{4} \Omega$

D	1.5Ω
Correct Answer	B

Q.No: 59	Curie temperature is the temperature above which a ferromagnetic material becomes
A	Paramagnetic
B	Diamagnetic
C	Remains ferromagnetic
D	None of these are correct
Correct Answer	A

Q.No: 60	The dielectric losses occur in all solid and liquid dielectric due to
A	Conduction current
B	Hysteresis
C	Both Conduction current \& Hysteresis
D	None of these are correct
Correct Answer	C

Q.No: 61	A 230V, 5A energy meter on full load unity power factor test makes $\mathbf{6 0}$ revolutions in $\mathbf{3 6 0}$ seconds. If the designed speed of the disc is 520 revolutions per KWh,the energy recorded by the meter is
A	$\mathbf{1 1 5 . 1 0 ^ { - 3 } \mathbf { ~ K W h ~ }}$
B	$\mathbf{1 1 5 . 1 8 5 \times 1 0 ^ { - \mathbf { 3 } } \mathrm { KWh }}$
C	$\mathbf{1 1 5 . 3 8 5 \times 1 0 ^ { - \mathbf { 3 } } \mathbf { ~ K W h ~ }}$
D	$\mathbf{1 1 5 . 6 8 \times 1 0 ^ { - \mathbf { 3 } } \mathrm { KWh }}$
Correct Answer	C

Q.No: 62	Two Watt meters can be used to measure power in a
A	Three phase four wire balanced load
B	Three phase four wire unbalanced load
C	Three phase three wire unbalanced load
D	All are correct
Question Deleted	

Q.No: 63	Under balanced condition of a bridge for measuring unknown impendence, if the detector is suddenly taken out
A	Measured value of impendence will be lower

B	Measured value of impendence will be higher
C	Measured value of impendence will not change
D	The impendence can not be measured
Correct Answer	C

Q.No: 64	In a spring-controlled moving iron instruments, the scale is
A	Uniform
B	Cramped at the lower end and expanded at the upper end
C	Expanded at the lower end and cramped at the upper end
D	Cramped both at the lower and the upper ends
Correct Answer	D

Q.No: 65	Which A/D converter has highest conversion time?
A	Flash type
B	Duel Slope integration
C	Successive approximation
D	Ramp/Counting
Correct Answer	B

Q.No: 66	The dynamic resistance can be important when a diode is
A	Reverse-biased
B	Forward-biased
C	In reverse breakdown
D	Unbiased
Correct Answer	B

Q.No: 67	A diode that has a negative resistance characteristic is the
A	Schottky diode
B	Tunnel diode
C	Laser diode
D	Hot-carrier diode
Correct Answer	B

[^0]

Q.No: 69	A certain common emitter amplifier has a voltage gain of 100. If the emitter bypass capacitor is removed,
A	The circuit will become unstable
B	The voltage gain will decrease
C	The voltage gain will increase
D	The Q point will shift
Correct Answer	B

Q.No: 70	In the certain common mode operation of the differential amplifier,
A	Both inputs are grounded
B	The outputs are connected together
C	An identical signal appears on both inputs
D	The output signals are in phase
Correct Answer	C

Q.No: 71	A depletion MOSFET operates in
A	The depletion mode only
B	The enhancement mode only
C	The ohmic region only
D	Both the depletion and enhancement modes

Correct Answer D

Q.No: 72	A certain inverting amplifier has a closed loop gain of 25. The op-amp has an open loop gain of 1,00,000. If another op-amp with an open loop gain of 2,00,000 is substituted in the configuration, the closed loop again
A	Doubles
B	Drops to $\mathbf{1 2 . 5}$
C	Remains at $\mathbf{2 5}$
D	Increases slightly
Correct Answer	C

Q.No: 73	The damping factor of an active filter is set by
A	The negative feedback circuit
B	The positive feedback circuit
C	The frequency selective circuit
D	The gain of the op-amp
Correct Answer	A

Q.No: 74	The 2 's compliment of 11001000 is
A	$\mathbf{0 0 1 1 0 1 1 1}$
B	$\mathbf{0 0 1 1 0 0 0 1}$
C	$\mathbf{0 1 0 0 1 0 0 0}$
D	$\mathbf{0 0 1 1 1 0 0 0}$
Correct Answer	D

Q.No: 75	A 3-variable karnaugh map has
A	Eight cells
B	Three cells
C	Sixteen cells
D	Four cells
Correct Answer	A

Q. No: 76	To implement the expression $\bar{A} B C D+A \bar{B} C D+A B \bar{C} \bar{D}$, it takes one OR gate and
A	One AND gate
B	Three AND gate
C	Three AND gates and four inverters

D	Three AND gates and three inverters
Correct Answer	C

Q.No: 77	In general, a multiplexer has
A	One data input, several data outputs and selection inputs
B	One data input, one data output and one selection input
C	Several data inputs, several data outputs and selection inputs
D	Several data inputs, one data output and selection inputs
Correct Answer	D

Q.No: 78	Like the latch, the Flip-Flop belongs to a category of logic circuits known as
A	Monostable multivibrators
B	Bistable multivibrators
C	Astable multivibrators
D	One shots
Correct Answer	B

Q.No: 79	A modulus 12 counter must have
A	12-Flip-Flops
B	3-Flip-Flops
C	4-Flip-Flops
D	Synchronous clocking
Correct Answer	C

Q. No: 80	The bit capacity of a memory that has $\mathbf{1 0 2 4}$ addresses and can store 8 bits at each address is
A	$\mathbf{1 0 2 4}$
B	$\mathbf{8 1 9 2}$
C	8
D	$\mathbf{4 0 9 6}$
Correct Answer	B

Q.No: 81	In a 3-phase fully controlled bridge rectifier the firing pulse frequency is
A	$\mathbf{3}$ times the line frequency
B	$\mathbf{6}$ times the line frequency
C	$\mathbf{9}$ times the line frequency

Correct Answer B

Q.No: 82	In a step-down converter using pulse width modulation, $\mathrm{T}_{\text {on }}=\mathbf{3 \times 1 0 ^ { - 3 }} \mathbf{s}$ and $\mathrm{T}_{\text {off }}=\mathbf{1 \times 1 0 ^ { - 3 }} \mathbf{s}$. The chopping frequency is
A	333 Hz
B	250 Hz
C	500 Hz
D	1000Hz
Correct Answer	B

Q.No: 83	A thyristor has internal power dissipation of $\mathbf{4 0 W}$ and is operated at an ambient temperature of $20^{\circ} \mathrm{C}$. If thermal resistance is $1.6{ }^{\circ} \mathrm{C} / \mathrm{W}$, the junction temperature is
A	$\mathbf{1 1 4}{ }^{\circ} \mathrm{C}$
B	$\mathbf{6 4}{ }^{\circ} \mathrm{C}$
C	$\mathbf{9 4}{ }^{\circ} \mathrm{C}$
D	$\mathbf{8 4}{ }^{\circ} \mathrm{C}$
Correct Answer	D

Q.No: 84	The characteristic equation of the closed loop system of figure below is
A	$s^{2}+11 s+10=0$
B	$s^{2}+11 s+130=0$
C	$s^{2}+11 s+120=0$
D	$s^{2}+10 s+12=0$
Correct Answer	B

Q.No: 85	The error function of a feedback system is state value of $e(t)$ is
A	$\mathbf{0 . 0 0 1}$
B	$\mathbf{0 . 1}$
C	$\mathbf{0 . 0 1}$

D	None of these are correct
Correct Answer	D

	Closed loop transfer function of a unity feedback system is given by Q.No: 86
$\frac{Y(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}$ System $\mathbf{k}_{\mathbf{v}}$ (velocity error constant) is	
A	$\frac{\omega_{n}}{2 \xi}$
B	1
C	$\frac{2 \xi}{\omega_{n}}$ D Correct Answer

Q.No: 87	The transfer function of a lag compensator is $D(s)=\frac{1+\alpha \tau s}{1+\tau s} ; \tau>0$ A
B	$\alpha=1$
C The value of α is given by	
D	$\alpha>1$
Correct Answer	B

Q.No: 88	A state variable formulation of a system is given by the equations $\begin{aligned} & {\left[\begin{array}{l} \dot{x}_{1} \\ \dot{x}_{2} \end{array}\right]=\left[\begin{array}{cc} -1 & 0 \\ 0 & -3 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]+\left[\begin{array}{l} 1 \\ 1 \end{array}\right] 4} \\ & \mathrm{y}=\left[\begin{array}{ll} 1 & 0 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] \end{aligned}$ The transfer function of the system is
A	$\frac{1}{(s+1)(s+3)}$
B	$\frac{1}{s+1}$
C	$\frac{1}{s+3}$
D	None of these are correct
Correct Answer	B

Q. No: 89	Let $\mathbf{P}_{\mathbf{i}}=$ core loss and $\mathbf{P}_{\mathbf{c}}=$ copper loss. \mathbf{A} transformer has maximum efficiency when
A	$\mathbf{P}_{\mathbf{i}}=\mathbf{2} \mathbf{P}_{\mathbf{c}}$
B	$\mathbf{P}_{\mathbf{i}}=\mathbf{1 . 5} \mathbf{P}_{\mathbf{c}}$
C	$\mathbf{P}_{\mathbf{i}}=\mathbf{P}_{\mathbf{c}}$
D	$\mathbf{P}_{\mathbf{i}}=\mathbf{0 . 5} \mathbf{P}_{\mathbf{c}}$
Correct Answer	\mathbf{C}

Q.No: 90	Pulsation loss in rotating machines occurs in
A	Pole body
B	Pole shoes
C	Yoke
D	Stator and rotor cores
Correct Answer	B

Q.No: 91	The armature reaction mmf in a DC machine is
A	Sinusoidal
B	Trapezoidal in shape
C	Rectangular in shape
D	Triangular in shape
Correct Answer	D

Q.No: 92	For a given torque, reducing the field turns of a DC series motor
A	Increases its speed demanding more armature current
B	Increases its speed but armature current remains the same
C	Decreases its speed demanding less armature current
D	Decreases its speed but armature current remains the same
Correct Answer	A

Q.No: 93	Synchronous motor speed is controlled by varying
A	Field execution
B	Supply voltage
C	Supply frequency only
D	Both (Supply voltage) and (Frequency)
Correct Answer	D

Q. No: 94	In a 3-phase induction machine at low slip, the torque slip characteristic is
A	$\mathrm{T} \propto \frac{1}{s^{2}}$
B	$T \propto s^{2}$
C	$\mathrm{T} \propto \frac{1}{s}$
D	T $\propto s$
Correct Answer	D

Q.No: 95	The power input to an induction motor is $\mathbf{4 0} \mathbf{~ k W}$ when it is running at 5% slip. The stator resistance and core loss are assumed negligible. The torque developed is synchronous watts is
A	$\mathbf{4 2} \mathbf{~ k W}$
B	$\mathbf{4 0} \mathbf{~ k W}$
C	$\mathbf{3 8} \mathbf{~ k W}$
D	$\mathbf{2 ~ k W}$
Correct Answer	B

Q.No: 96	The converter which can feed power in any one of the four quadrants is
A	Semi converter
B	Full converter
C	Dual converter
D	A combination of semi and full converter
Correct Answer	C

Q.No: 97	Circuit breakers usually operate under
A	Transient state of short circuit current
B	Sub-transient state of short circuit current
C	Steady state of short circuit current
D	After dc component has ceased
Correct Answer	A

Q. No: 98	Current in the primary writing of CT depends on
A	Burden in the secondary winding of a transformer
B	Load connected to the system in which CT is being used for measurement

C	Both burden on the secondary and load connected to a system
D	None of these are correct
Correct Answer	B

Q.No: 99	A synchronous condenser is
A	An induction motor
B	Under excited synchronous motor
C	Over excited synchronous motor
D	DC generator
Correct Answer	C

Q.No: 100	Power generation cost reduces as
A	Diversity factor increases and load factor decreases
B	Diversity factor decreases and load factor increases
C	Both diversity as well as load factor decreases
D	Both diversity as well as load factor increases
Correct Answer	D

[^0]: Q.No: 68

 For the circuit of figure below, which is a stiff voltage divider based transistor circuit, the emitter current I_{E} is

